三角形ABC是等腰直角三角形,角ACB=90度,D是AC的中点,连接BD,做角ADF=角CDB,连接CF交BD于E,
题目
三角形ABC是等腰直角三角形,角ACB=90度,D是AC的中点,连接BD,做角ADF=角CDB,连接CF交BD于E,
求证BD垂直CF
答案
过点A作AH∥BC,延长DF交AH于H.
∵∠HAD=∠DCB=90°,AD=DC,∠ADH=∠CDB ∴⊿ADH≌⊿CDB﹙ASA﹚ ∠CBD=∠DHA ,AH=AC ;∵AH∥BC ∴∠ACB=∠CAH=90° AC=BC ∠CAF=∠HAF=45° AF=AF
∴⊿AFC≌⊿AFH ∴∠AHF=∠DCF 在⊿AHD中,∴∠AHF=∠DBC=∠DCF ∠ADH=∠BDC,∠AHF+∠ADH=90°,∴∠DCF+∠BDC=90°
∴BD⊥CF
希望满意,采纳.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点