已知a,b属于正实数,且满足a+3b=1,则ab的最大值K
题目
已知a,b属于正实数,且满足a+3b=1,则ab的最大值K
答案
利用均值不等式:a、b为正实数,则a+b≥2√(ab).
∵1=a+3b≥2√(a*3b)=2√3*√(ab),当a=3b=1/2取等
∴ab≤1/12,当a=1/2,b=1/6取等
∴ab的最大值是1/12..
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点