设f(x)为定义在(-L,L)内的奇函数,若f(x)在(0,L)内单调增加,证明f(X)在(-L,0)内也单调增加.
题目
设f(x)为定义在(-L,L)内的奇函数,若f(x)在(0,L)内单调增加,证明f(X)在(-L,0)内也单调增加.
答案
f(x)为定义在(-L,L)上的奇函数,则当x1,x2属于(-L,0),
f(x1)=-f(-x1)和f(x2)=-f(-x2),不妨设上面的x1>x2,则-x1f(x2)
从而得证:f(x)在(-L,0)上也单增
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点