设函数f(x)是定义在[-1,0)∪(0,1]上的奇函数,当x∈[-1,0)时,f(x)=2ax+1/x^2(a∈R)
题目
设函数f(x)是定义在[-1,0)∪(0,1]上的奇函数,当x∈[-1,0)时,f(x)=2ax+1/x^2(a∈R)
(1)当x∈(0,1]时,求f(x)的解析式
(2)当a>0时,判断函数f(x)在(0,1]上的单调性,并加以证明.
答案
设x∈(0,1],则-x∈[-1,0),得f(-x)=-2ax+1/x^2
由奇函数得 -f(x)=2ax+1/x^2
即 f(x)=-2ax-1/x^2 (x∈(0,1])
f'(x)=-2a+2/x^3
2/x^3在(0,1]上取[2,正无穷)
当0
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点