如图△ABC中∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点,求证:DE是⊙O的切线.
题目
如图△ABC中∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点,求证:DE是⊙O的切线.
答案
证明:连接AD、DO;
∵AB是⊙O的直径,
∴∠ADB=∠ADC=90°.
∵E是AC的中点,
∴DE=AE(直角三角形中斜边中线等于斜边一半),
∴∠EAD=∠EDA.
∵OA=OD,
∴∠DAO=∠ADO,
∴∠EDO=∠EDA+∠ADO=∠EAD+∠DAO=∠CAB=90°.
∴OD⊥DE.
DE是⊙O的切线.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点