1、△ABC中,∠C=90°,且满足关于x的方程(2sinB+1)x²-2x+sinB=0有两个不同的实数根,则∠A的取值范围是_______.

1、△ABC中,∠C=90°,且满足关于x的方程(2sinB+1)x²-2x+sinB=0有两个不同的实数根,则∠A的取值范围是_______.

题目
1、△ABC中,∠C=90°,且满足关于x的方程(2sinB+1)x²-2x+sinB=0有两个不同的实数根,则∠A的取值范围是_______.
2、面积为1的三角形ABC中,AB=AC=2,则∠B=______.
答案
1、△ABC中,∠C=90°,且满足关于x的方程(2sinB+1)x²-2x+sinB=0有两个不同的实数根.
△=4-4sinB(2sinB+1)>0
1-2sin²B-sinB>0
2sin²B+sinB-1<0
因为sinB=cosA
2cos²A+cosA-1<0
(2cosA+1)(cosA-1)<0
-1/2因为在直角三角形中,∠C=90°,那么∠A是锐角,cosA>0
所以:0所以,∠A的取值范围是(0,90°)
2、面积为1的三角形ABC中,AB=AC=2
△ABC是等腰三角形.
过顶点A作底BC的高交BC于点D
AD=ABsinB=2sinB
BC=2BD=2ABcosB=4cosB
三角形ABC的面积=AD×BC/2
=4sinBcosB=1
2sin2B=1
sin2B=1/2
2∠B=30°
∠B=15°
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.