已知:如图,在正方形ABCD中,AC,BD交于点O,延长CB到点E,使BE=BC,连接DE交AB于点F,求证:OF=1/2BE.
题目
已知:如图,在正方形ABCD中,AC,BD交于点O,延长CB到点E,使BE=BC,连接DE交AB于点F,求证:OF=
BE.
答案
证明:∵四边形ABCD是正方形,
∴BC=AD.
又∵BE=BC,
∴BE=AD.
∵AD∥BE,
∴∠E=∠ADF,∠AFD=∠EFB.
∴△ADF≌△BEF.
∴DF=FE.
又∵DO=OB.
∴OF为△BDE的中位线.
∴OF=
BE.
根据正方形的性质利用AAS判定△ADF≌△BEF,得到DF=EF,因为DO=OB,从而得到OF为△BDE的中位线即OF=
BE.
正方形的性质;全等三角形的判定与性质;三角形中位线定理.
此题考查学生对正方形的性质,全等三角形的判定及中位线定理的综合运用.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点