已知实数a,b,c,r,p满足pr>1,pc-2b+ra=0,求证:一元二次方程ax2+2bx+c=0必有实数根.

已知实数a,b,c,r,p满足pr>1,pc-2b+ra=0,求证:一元二次方程ax2+2bx+c=0必有实数根.

题目
已知实数a,b,c,r,p满足pr>1,pc-2b+ra=0,求证:一元二次方程ax2+2bx+c=0必有实数根.
答案
证明:由已知得2b=pc+ra,
所以△=(2b)2-4ac=(pc+ra)2-4ac
=p2c2+2pcra+r2a2-4ac
=p2c2-2pcra+r2a2+4pcra-4ac
=(pc-ra)2+4ac(pr-1).
由已知pr-1>0,又(pc-ra)2≥0,
所以当ac≥0时,△≥0;
当ac<0时,也有△=(2b)2-4ac>0.
综上,总有△≥0,
故原方程必有实数根.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.