证明当k≥4时2^(k-1)>k+2

证明当k≥4时2^(k-1)>k+2

题目
证明当k≥4时2^(k-1)>k+2
答案
用导数证明的
设f(k)=2^(k-1),g(k)=k+2
f'(k)=2^(k-1)*ln2
g'(k)=1
k≥4时
f'(k)=2^(k-1)*ln2是增函数
∴f'(k)最小值=2^3*ln2=8ln2>1
∴k≥4时
f'(x)>g'(k)
∵f(4)=2^3=8>g(4)=6
∴f(k)>g(k)
即2^(k-1)>k+2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.