设F1,F2,为椭圆X^2/9+Y^2/4=1的两个焦点,P为椭圆上一点,已知P、F1、F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,求|PF1|/|PF2|的值.
题目
设F1,F2,为椭圆X^2/9+Y^2/4=1的两个焦点,P为椭圆上一点,已知P、F1、F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,求|PF1|/|PF2|的值.
已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线Y=X+1与椭圆交于P和Q,且OP垂直OQ,|PQ|=(√10)/2,求椭圆方程
答案
∵P、F1、F2是一个直角三角形的三个顶点
分2种情况
①P为直角顶点
∵|PF1│+│PF2|=6
|PF1|^2+|PF2|^2=20
解出 |PF1|×|PF2|=8
∵|PF1│+│PF2|=6
∴||PF1|=4 |PF2|=2
∴|PF1|/|PF2|=2
② F2为直角顶点
|PF1│+│PF2|=6
|PF1|^2-|PF2|^2=20
∴|PF1|=14/3 |PF2|=4/3
∴|PF1|/|PF2|=7/2
(2)设椭圆方程:ax^2+by^2=1 (a、b>0)
两交点为P(x1,x1+1),Q(x2,x2+1)
∵ax^2+by^2=1
y=x+1
消去y得(a+b)x^2+2bx+b-1=0
∵│PQ|=√(1+k^2)×√[(x1+x2)^2-4x1x2]=√10/2
∵x1+x2=-2b/(a+b),x1x2=(b-1)/(a+b)
∴(a+b-ab)/(a+b)^2=5/16
∵OP⊥OQ,∴(x1,x1+1)·(x2,x2+1)=0
∴x1x2+(x1+1)(x2+1)=0
∵x1+x2=-2b/(a+b),x1x2=(b-1)/(a+b)
∴a+b=2
∵(a+b-ab)/(a+b)^2=5/16
∴ab=3/4
∴a=3/2,b=1/2或a=1/2,b=3/2;
∴椭圆方程为:
3(x^2)/2+(y^2)/2=1
或(x^2)/2+3(y^2)/2=1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 仿写句子 遗忘是心的缝隙,漏掉了多少珍贵的回忆
- 一个原子中,量子数n=3,l=2,m=2,可允许的电子数最多是多少?
- 英文是大写VER=1.1翻译成汉语怎么读
- “窈窕淑女 寤寐求之 求之不得 寤寐思服”中的“服”是什么意思?
- 已知a为正整数,且a^3+2a^2_12a+15表示某素数,求出这个素数
- 车马炮各表示三个不同的数,如果车除以马=3,炮除以马=5,炮减车=12,那么车+马+炮=( )
- 列方程解应用题:某人从家里骑自行车到学校.若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?
- 几个简单的信息技术会考题目
- East or west,home is best 的作文,
- 实验小学七月份用电120千瓦时,比六月份节约1/7.六月份用电多少千瓦时