如图,在三棱锥P-ABC中,∠APB=∠BPC=∠APC=90°,O在△ABC内,∠OPA=45°,∠OPB=60°,则∠OPC的度数为( ) A.30° B.45° C.60° D.75°
题目
如图,在三棱锥P-ABC中,∠APB=∠BPC=∠APC=90°,O在△ABC内,∠OPA=45°,∠OPB=60°,则∠OPC的度数为( )
A. 30°
B. 45°
C. 60°
D. 75°
答案
已知如图所示:
过O做平面PBC的垂线,
交平面PBC于Q,连接PQ
则∠OPQ=90°-60°=30°.
∵cos∠OPB=cos∠OPQ×cos∠QPB,
得到cos∠QPB=
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程. 我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
|
|