设圆满足:1.截y轴所得弦长为2
题目
设圆满足:1.截y轴所得弦长为2
2.被x轴分成两队圆弧,其弧长的比为3:1
在满足条件1和2的所有圆中,求圆心到直线l:x-2y=0的距离为5分之根号5的圆的方程
(x-1)^2+(y-1)^2=2 或 (x+1)^2+(y+1)^2=2
答案
已知圆满足①截Y轴所得弦长为2 ②被X轴分成两段圆弧,其弧长的比为3 :1 ③圆心到直线L:X-2Y=0的距离为√5/5,求圆的方程
设圆的方程为(x-a)²+(y-b)²=R².(1)
圆心M(a,b)到直线x-2y=0的距离为√5/5,故有等式:
|a-2b|/√5=√5/5,故
a-2b=-1.(2)
或a-2b=1.(3)
设圆与Y轴的交点为(0,y1)和(0,y2),将x=0代入(1)式,得:
y²-2by+a²+b²-R²=0
因“圆截Y轴所得弦长为2”,即|y1-y2|=2.按韦达定理,有等式:
(y1-y2)²=(y1+y2)²-4y1*y2
=4b²-4(a²+b²-R²)
=4(R²-a²)=4
于是得:R²-a²=1.(4)
又“被X轴分成两段圆弧,其弧长的比为3 :1”,设劣弧S1所对的圆心
角为θ1,优弧S2所对的圆心角为θ2,则
S2/S1=Rθ2/Rθ1=θ2/θ1=3/1,故θ1=90˚,θ2=270˚.
设圆弧与X轴相交于A,B两点,则△AMB是等腰直角三角形,因此弦
长|AB|=|X1-X2|=(√2)R.
令(1)式中的y=0,便得:
x²-2ax+a²+b²-R²=0
于是由韦达定理有:
(x1-x2)²=(x1+x2)²-4x1*x2=4a²-4(a²+b²-R²)
=4(R²-b²)=2R²
即R²-2b²=0.(5)
由(2)(4)(5)联立解得:a=1,b=1,R²=2.
此时圆的方程为:(x-1)²+(y-1)²=2
由(3)(4)(5)联立解得:a=-1,b=-1,R²=2.
此时圆的方程为:(x+1)²+(y+1)²=2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 从24增加到30,请问增加了多少百分比?是怎么算的,
- fashion是什么意思
- 用不必说.也不必说.单是写一段话,100字以上
- 一岁一枯荣的上一句
- 联系上下文根据首字母提示,完成填空
- 鉴定氯离子时,怎样排除硫酸根离子的干扰?
- 帮我评论下我的雅思作文(用雅思的标准),评分,评语,改正语法,越细越好
- 3分之1+5分之4-7分之3=多少
- 在半径为4厘米的圆中,弦AB等于4厘米,则圆心O到AB的距离为多少厘米
- 质量为m的小球在竖直平面的圆形轨道内侧运动,经过最高点而不脱离轨道的临界速度是v,当小球以2v的速度经过最高点时,对轨道的压力大小是多少?