若角Q属于(0,180),且sinQ+cosQ=1/3,则cos2Q的值等于

若角Q属于(0,180),且sinQ+cosQ=1/3,则cos2Q的值等于

题目
若角Q属于(0,180),且sinQ+cosQ=1/3,则cos2Q的值等于
答案
两边平方得:sinQ^2+cosQ^2+2sinQcosQ=1/9
即: 2sinQcosQ=-8/9
所以 sin2Q=-8/9
所以 cos2Q=-√17/9或者cos2Q=√17/9
又因为 2sinQcosQ=-8/9 所以sinQ与cosQ异号,
又Q属于(0,180)属于第一象限
因此Q属于(90,180)
又因为sinQ+cosQ=1/3>0 所以 sinQ的绝对值大于cosQ的绝对值
所以 Q属于(90,135)
所以 cos2Q 属于(180,270)
所以 cos2Q <0
所以 cos2Q=-√17/9
回答完毕!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.