已知两圆C1:(x+4)2+y2=2,C2:(x-4)2+y2=2,动圆M与两圆C1,C2都相切,则动圆圆心M的轨迹方程是(  ) A.x=0 B.x22-y214=1(x≥2) C.x22-y214

已知两圆C1:(x+4)2+y2=2,C2:(x-4)2+y2=2,动圆M与两圆C1,C2都相切,则动圆圆心M的轨迹方程是(  ) A.x=0 B.x22-y214=1(x≥2) C.x22-y214

题目
已知两圆C1:(x+4)2+y2=2,C2:(x-4)2+y2=2,动圆M与两圆C1,C2都相切,则动圆圆心M的轨迹方程是(  )
A. x=0
B.
x2
2
-
y2
14
=1(x≥
2
)

C.
x2
2
-
y2
14
=1

D.
x2
2
-
y2
14
=1或x=0
答案
由题意,①若两定圆与动圆相外切或都内切,即两圆C1:(x+4)2+y2=2,C2:(x-4)2+y2=2,动圆M与两圆C1,C2都相切,
∴|MC1|=|MC2|,即M点在线段C1,C2的垂直平分线上
又C1,C2的坐标分别为(-4,0)与(4,0)
∴其垂直平分线为y轴,
∴动圆圆心M的轨迹方程是x=0
②若一内切一外切,不妨令与圆C1:(x+4)2+y2=2内切,与圆C2:(x-4)2+y2=2外切,则有M到(4,0)的距离减到(-4,0)的距离的差是2
2
,由双曲线的定义知,点M的轨迹是以(-4,0)与(4,0)为焦点,以
2
为实半轴长的双曲线,故可得b2=c2-a2=14,故此双曲线的方程为
x2
2
-
y2
14
=1

综①②知,动圆M的轨迹方程为
x2
2
-
y2
14
=1或x=0

应选D.
由于动圆与两个定圆都相切,可分两类考虑,若动圆与两定圆相外切或与两定圆都内切,可以得出动圆与两定圆圆心的距离相等,故动圆圆心M的轨迹是一条直线,且是两定圆圆心连线段的垂直平分线.若一内切一外切,则到两圆圆心的距离差是一个常数,由双曲线的定义知,此种情况下轨迹是双曲线.

轨迹方程;圆与圆的位置关系及其判定.

考查圆与圆的位置关系,及垂直平分线的定义.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.