在正方形ABCD中,P,Q为AB,BC上的点,且BP=BQ,过B点作PC的垂线,垂足H,求证DH垂直HQ.
题目
在正方形ABCD中,P,Q为AB,BC上的点,且BP=BQ,过B点作PC的垂线,垂足H,求证DH垂直HQ.
答案
证明:
因为BH垂直PC
所以,在三角形PBC中,角PBH=角BCP
角CPB=角BHA
又AB=BC
所以 三角形ABH全等于BCP
所以 AH=BP
所以 AH=BQ
所以 HDCQ是长方形
所以 DH垂直HQ
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点