如图,在▱ABCD中,E,F分别是AD、BC上的点,且DE=CF,BE和AF的交点为M,CE和DF的交点为N,求证:MN∥AD,MN=1/2AD.
题目
如图,在▱ABCD中,E,F分别是AD、BC上的点,且DE=CF,BE和AF的交点为M,CE和DF的交点为N,求证:MN∥AD,MN=
答案
证明:连接EF,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC.
∵DE=CF,
∴AE=BF.
∴四边形ABFE和四边形CDEF都是平行四边形.
∴BM=ME,CN=NE.
∴MN是△BCE的中位线.
∴MN∥AD,MN=
AD.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点