证明:不论m取何值时,关于x的方程(x-1)(x-2)=m2总有两个不相等的实数根.
题目
证明:不论m取何值时,关于x的方程(x-1)(x-2)=m2总有两个不相等的实数根.
答案
证明:方程化为一般式为:x2-3x+2-m2=0,
∴△=32-4(2-m2)=4m2+1,
∵不论m取何值,4m2≥0,
∴△>0.
所以不论m取何值时,关于x的方程(x-1)(x-2)=m2总有两个不相等的实数根.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点