大学初等数论的问题!

大学初等数论的问题!

题目
大学初等数论的问题!
1、 证明:70!≡61!(mod 71)
2、 求3的100次方的模10的余数
3、 求3的50次方的十进制数表示中最末的两位数
答案
1、 证明:70!≡61!(mod 71)
引理:ac==bc mod m,(c,m)=1,则a==b.证略.
依引理,只须证70!/61!==1 mod 71
即 70*69*...62==-1*-2*...*-9==-9!==-362880==1,显然.
2、 求3的100次方的模10的余数
引理:(a,m)=1,则a^φ(m)==1 mod m.证略.
由于3^φ(10)==1mod 10,即3^4==1
故3^100==1
3、 求3的50次方的十进制数表示中最末的两位数
同上理,3^25==1 mod 100
故3^50==1
即其十进表示最末二位数为01
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.