将5名同学分到甲、乙、丙3个小组,若甲组至少两人,乙、丙组至少各一人,则不同的分配方案的种数为( ) A.80 B.120 C.140 D.50
题目
将5名同学分到甲、乙、丙3个小组,若甲组至少两人,乙、丙组至少各一人,则不同的分配方案的种数为( )
A. 80
B. 120
C. 140
D. 50
答案
由题意知本题是一个分步分类计数问题,
首先选2个放到甲组,共有C52=10种结果,
再把剩下的3个人放到乙和丙两个位置,每组至少一人,共有C32A22=6种结果,
∴根据分步计数原理知共有10×6=60,
当甲中有三个人时,有C53A22=20种结果
∴共有60+20=80种结果
故选A.
本题是一个分步计数问题,首先选2个放到甲组,共有C52种结果,再把剩下的3个人放到乙和丙两个位置,每组至少一人,共有C32A22,相乘得到结果,再表示出甲组含有3个人时,选出三个人,剩下的两个人在两个位置排列.
排列、组合及简单计数问题.
本题考查排列组合及简单计数问题,本题是一个基础题,解题时注意对于三个小组的人数限制,先排有限制条件的位置或元素.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点