已知函数g(x)=1/x+㏑x,f(x)=mx-(m-1)/x-㏑x,h(x)=2e/x,

已知函数g(x)=1/x+㏑x,f(x)=mx-(m-1)/x-㏑x,h(x)=2e/x,

题目
已知函数g(x)=1/x+㏑x,f(x)=mx-(m-1)/x-㏑x,h(x)=2e/x,
若在[1,e]上至少存在一个x0,使得f(x0)-g(x0)>h(x0)成立,求m的取值范围
答案
g(x)=1/x+㏑x,f(x)=mx-(m-1)/x-㏑x,h(x)=2e/x,
1,e]上至少存在一个x0,
f(x0)-g(x0)>h(x0)成立则f(x0)-g(x0)-h(x0)>0
f(1)-g(1)-h(1)=1-1-2eh(x0)成立
则f(e)-g(e)-he)=me-(m-1)/e-1-(1/e+1)-2>0
借这个不等式就可以得到m的取值范围了
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.