在三角形ABC中,AB=BC,P为AB边上一点,连接CP,以PA,PC为邻边做平行四边形APCD,AC与PD相交于点E
题目
在三角形ABC中,AB=BC,P为AB边上一点,连接CP,以PA,PC为邻边做平行四边形APCD,AC与PD相交于点E
已知∠ABC=∠AEP(o°<α<90°).EEO
(1)求证∠EAP=∠EPA
(2)平行四边形APCD是否为矩形?请说明理由.
(3)若F为BC中点,连接EP,将∠AEP绕点E顺时针旋转适当的角度,得到∠MEN,猜想线段EM与EN之间的数量关系,并证明你的结论.
答案
证明:(1)在△ABC和△AEP中,
∵∠ABC=∠AEP,∠BAC=∠EAP,
∴∠ACB=∠APE,
在△ABC中,AB=BC,
∴∠ACB=∠BAC,
∴∠EPA=∠EAP.
(2)答:APCD是矩形.
∵四边形APCD是平行四边形,
∴AC=2EA,PD=2EP,
∵由(1)知∠EPA=∠EAP,
∴EA=EP,
则AC=PD,
APCD是矩形.
(3)答:EM=EN.
∵EA=EP,
∴∠EPA=90°- 1/2α,
∴∠EAM=180°-∠EPA=180°-(90°- 1/2α)=90°+ 1/2α,
由(2)知∠CPB=90°,F是BC的中点,
∴FP=FB,
∴∠FPB=∠ABC=α,
∴∠EPN=∠EPA+∠APN=∠EPA+∠FPB=90°- 1/2α+α=90°+ 1/2α,
∴∠EAM=∠EPN,
∵∠AEP绕点E顺时针旋转适当的角度,得到∠MEN,
∴∠AEP=∠MEN,
∴∠AEP-∠AEN=∠MEN-∠AEN即∠MEA=∠NEP,
∴△EAM≌△EPN,
∴EM=EN.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 已知代数式x²-2x+1的值为3,那么代数式3x²-6x+1的值为()
- 1.已知双曲线x2-m已知双曲线x2-my2=1(m>0)的右顶点为A,而B,C是双曲线右支上两点,若△ABC为正三角形,则m的取值范围是(详细过程)
- 小明每天放学从学校回家的路程为900m,某天放学他从学校回家以每分钟30m的速度走了10分钟,从这一时刻算起,如果他仍以原速行走,求小明到家的路程s(m)和行走的时间t(分)之间的函数关系式,并求自变
- 惦记的近意词是什么呀
- 一天内各个时段太阳高度角怎么算
- 甲数比乙书的百分之45少10乙数是60甲数是多少
- 爱莲说,作者是从哪方面描写莲花的,赋予了莲花哪些品格?
- 哪些句子表现作者的快乐
- 已知正弦函数y=sinx为增函数且cosx>0,则角x是第几象限
- 1/1x2 + 1/2x3 + 1/3x4 +...+1/19x20