已知数列an满足a1=1 2a(n+1)=an+3 N属于N* 求数列通项公式

已知数列an满足a1=1 2a(n+1)=an+3 N属于N* 求数列通项公式

题目
已知数列an满足a1=1 2a(n+1)=an+3 N属于N* 求数列通项公式
答案
2a(n+1)=an+3
二边同时减6得:
2[a(n+1)-3]=an-3
即[a(n+1)-3]/(an-3)=1/2
即{an-3}是一个首项是a1-3=-2,公比是1/2的等比数列.
所以,an-3=-2*(1/2)^(n-1)
an=3-2^(2-n)
a1=1也符合.
所以,an=3-2^(2-n)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.