如图,已知AG⊥BD,AF⊥CE,BD、CE分别是∠ABC和∠ACB的角平分线,若BF=2,ED=3,GC=4,则△ABC的周长为_.

如图,已知AG⊥BD,AF⊥CE,BD、CE分别是∠ABC和∠ACB的角平分线,若BF=2,ED=3,GC=4,则△ABC的周长为_.

题目
如图,已知AG⊥BD,AF⊥CE,BD、CE分别是∠ABC和∠ACB的角平分线,若BF=2,ED=3,GC=4,则△ABC的周长为______.
答案
由AG⊥BD,BD是∠ABC,可得∠ADB=∠GDB=90°,∠ABD=∠GBD,BD为公共边,∴△ADB≌△GDB,∴AB=GB,∵AF⊥CE,CE是∠ACB的角平分线,同理可证;AC=FC,即△ABG和△ACF都是等腰三角形.又因AG⊥BD,AF⊥CE,所以E、D...
由AG⊥BD,AF⊥CE,BD、CE分别是∠ABC和∠ACB的角平分线推出即△ABG和△ACF都是等腰三角形.根据三角形中位线定理可得FG=2DE=6,即可解题.

等腰三角形的判定与性质.

此题涉及到的知识点较多,有全等三角形的判定与性质,等腰三角形的判定与性质,三角形中位线定理的应用等,对于初二的学生来说,是一道难题.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.