已知⊙O是等腰梯形ABCD的内切圆,上底AD=a,下底BC=b,则其内切圆的半径OP为 _ .
题目
已知⊙O是等腰梯形ABCD的内切圆,上底AD=a,下底BC=b,则其内切圆的半径OP为 ___ .
答案
设⊙O的半径OP=r,
过A作AE⊥BC于E,过D作DF⊥BC于F,过D作MN⊥AD交BC于N,
则AE∥MN∥DF,
∵AD∥BC,
∴四边形AENM和四边形DFNM是平行四边形,
∴AE=NM=DF=2r,AD=EF=b-a,
∵AB=DC,
∴由勾股定理得:BE=CF=
(b-a),
∵⊙O是等腰梯形ABCD的内切圆,
∴AB=DC
(a+b),
在Rt△ABE中,由勾股定理得:AE=
=
,
∴OP=
.
故答案为:
.
设⊙O的半径OP=r,过A作AE⊥BC于E,过D作DF⊥BC于F,过D作MN⊥AD交BC于N,得出四边形AENM和四边形DFNM是平行四边形,推出AE=NM,由勾股定理得出BE=CF=12(b-a),求出AB=DC12(a+b),在Rt△ABE中,由勾股定理求出即可.
三角形的内切圆与内心.
本题考查了等腰直角三角形性质,切线性质,平行四边形的性质和判定,勾股定理等知识点的应用,关键是求出AB和BE的长.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点