设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联

设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联

题目
设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围为(  )
A. (-
9
4
,-2]
B. [-1,0]
C. (-∞,-2]
D. (-
9
4
,+∞)
答案
∵f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,
故函数y=h(x)=f(x)-g(x)=x2-5x+4-m在[0,3]上有两个不同的零点,
故有 
h(0)≥0
h(3)≥0
h(
5
2
)<0
,即
4−m≥0
−2−m≥0
25
4
25
2
+4−m<0
,解得-
9
4
<m≤-2,
故选A.
由题意可得h(x)=f(x)-g(x)=x2-5x+4-m 在[0,3]上有两个不同的零点,故有 
h(0)≥0
h(3)≥0
h(
5
2
)<0
,由此求得m的取值范围.

函数零点的判定定理.

本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.