如图,矩形ABCD中,已知AB=2AD,E为AB的中点,将△AED沿DE折起,使AB=AC,求证:平面ADE⊥平面BCDE.

如图,矩形ABCD中,已知AB=2AD,E为AB的中点,将△AED沿DE折起,使AB=AC,求证:平面ADE⊥平面BCDE.

题目
如图,矩形ABCD中,已知AB=2AD,E为AB的中点,将△AED沿DE折起,使AB=AC,求证:平面ADE⊥平面BCDE.
答案
证明:取DE中点M,BC中点N,连AM、MN、AN,
∵AB=AC,∴AN⊥BC,又MN⊥BC,MN∩AN=N
∴BC⊥平面AMN,则BC⊥AM
∵AD=AE,∴AM⊥DE,而BC与DE相交,
∴AM⊥平面BCDE
∵AM⊂平面ADE,∴平面ADE⊥平面BCDE.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.