用裂项法求值

用裂项法求值

题目
用裂项法求值
1/1x2x3 + 1/2x3x4 +1/3x4x5 + … + 1/n(n+1)(n+2)
1/1x3 + 1/2x4 + 1/3x5 … + 1/n(n+2)
答案
1/n(n+1)(n+2)=[1/n(n+1)-1/(n+1)(n+2)]/2
1/1x2x3 + 1/2x3x4 +1/3x4x5 + … + 1/n(n+1)(n+2)
=[和1/n(n+1)-和1/(n+1)(n+2)]/2
=[1-1/(n+1)-1/2+1/(n+2)]/2
=1/4-1/2(n+1)(n+2)
1/n(n+2)=[1/n-1/(n+2)]/2
1/1x3 + 1/2x4 + 1/3x5 … + 1/n(n+2)
=[1+1/2-1/(n+1)-1/(n+2)]/2
=3/4-1/2(n+1)-1/2(n+2)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.