若函数f(x)=x/(ax+b)(a≠0),f(2)=1,又方程f(x)=x有唯一解,则f(x)=______.
题目
若函数f(x)=x/(ax+b)(a≠0),f(2)=1,又方程f(x)=x有唯一解,则f(x)=______.
答案
f(x)=x/(ax+b)
∵f(2)=1,
∴2a+b=2
又∵方程f(x)=x有唯一解
x/(ax+b)=x
即(x-ax^2-bx)/(ax+b) =0有唯一解
即x(ax+b-1)=0有唯一解
显然只能是x=0
那么只需b-1=0
∴b=1
∵2a+b=2
∴a=1/2
则f(x)=x/(0.5 x+1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点