一物体以v0=8m/s的速度从低端沿斜面上滑,当它再次回到斜面低端时,速率为V=4倍的根号2米每秒.

一物体以v0=8m/s的速度从低端沿斜面上滑,当它再次回到斜面低端时,速率为V=4倍的根号2米每秒.

题目
一物体以v0=8m/s的速度从低端沿斜面上滑,当它再次回到斜面低端时,速率为V=4倍的根号2米每秒.
已知鞋面倾角为37度,g取10米每秒的平方,求动摩擦因素及上滑的最大距离.
答案
设所求动摩擦因数为μ ,最大上滑距离为S
方法较多,我用动能定理做.上升阶段:
m*V0^2 /2=μ mg*cos37度*S+mg*sin37度*S= mg(μ*cos37度+*sin37度)*S
简化得 8^2 /2=10*(μ *0.8+0.6)*S .方程1
下滑阶段:m*V^2 /2=mg*sin37度*S-μ mg*cos37度*S=mg*(sin37度-μ *cos37度)*S
简化得 4^2 /2=10*(0.6-μ *0.8)*S .方程2
以上两个方程联立得 μ =0.45 ,S=3.33米
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.