求平面y=o,y=kx(k>0),z=0,以及球心在原点,半径为R的上半球面所围成的第一卦限内立体的体积

求平面y=o,y=kx(k>0),z=0,以及球心在原点,半径为R的上半球面所围成的第一卦限内立体的体积

题目
求平面y=o,y=kx(k>0),z=0,以及球心在原点,半径为R的上半球面所围成的第一卦限内立体的体积
答案
半径为R的球在第一卦限内的体积为πRRR/6,设α为平面y=0和平面y=kx所成的两面角,则k=tanα,α=arctank,故所求体积为S=πRRR/6×(α÷π/2)=πRRR/6×(2α/π)=αRRR/3=RRRarctank/3.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.