A为n×n矩阵,已知|A|=0,求证|A*|=0 (|A*|为A的伴随矩阵)

A为n×n矩阵,已知|A|=0,求证|A*|=0 (|A*|为A的伴随矩阵)

题目
A为n×n矩阵,已知|A|=0,求证|A*|=0 (|A*|为A的伴随矩阵)
A*为A的伴随矩阵
答案
反证. 若|A*|不等于0, 则A*可逆. 由 AA*=|A|E=0 右乘A*的逆得A=0, 故A*=0. 所以|A*|=0. 矛盾
所以|A*|=0.
满意请采纳.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.