设A.B.C.D是球面上的四点,在同一平面内AB=BC=CD=DA=3球心到平面的距离是球半径的一半则球体积是?

设A.B.C.D是球面上的四点,在同一平面内AB=BC=CD=DA=3球心到平面的距离是球半径的一半则球体积是?

题目
设A.B.C.D是球面上的四点,在同一平面内AB=BC=CD=DA=3球心到平面的距离是球半径的一半则球体积是?
答案
先求出半径,利用勾股定理,球心到球面上任意一点的距离是半径,这个是斜边,圆心到平面的距离是一条直角边,平面的对角线的一半是另外一条直角边.
这样求出半径是√6,在根据球体积公式,算出体积,应该是8√6PI
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.