试证明:不存在两个自然数,它们的差与和的乘积等于1990.

试证明:不存在两个自然数,它们的差与和的乘积等于1990.

题目
试证明:不存在两个自然数,它们的差与和的乘积等于1990.
答案
设两个自然数为a,b
(a+b)(a-b)=1990
因为a+b和a-b同为奇数或偶数
所以
1.同为奇数
则它们乘积为奇数,而1990是偶数,矛盾,不可能;
2.同为偶数
则它们乘积为2×2=4的倍数,而1990=2×995只是2的倍数,而不是4的倍数
所以
不存在两个自然数,它们的差与和的乘积等于1990..
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.