设A为n阶方阵,r(A)=r1,r(A+E)=r2,r(A+2E)=r3,且r1+r2+r3=2n,证明A可对角化.

设A为n阶方阵,r(A)=r1,r(A+E)=r2,r(A+2E)=r3,且r1+r2+r3=2n,证明A可对角化.

题目
设A为n阶方阵,r(A)=r1,r(A+E)=r2,r(A+2E)=r3,且r1+r2+r3=2n,证明A可对角化.
答案
说一下思路吧.把 A,A+E,A+2E 放在一个大矩阵(3n×3n)的对角线上,通过分块矩阵初等变换可以化成 diag[E,E,A(A+E)(A+2E)] 这一步是难点,楼主不妨尝试一下.初等变换不改变秩,所以r[A(A+E)(A+2E)]+2n=r1+r2+r3=2n 因此...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.