如图,在等腰RT△ABC中,∠A=90°,P为BC的中点,小明拿着含45°角的透明三角板,使45°角的顶点落在点P,且绕P旋转.(1)如图1,当三角板的两边分别交AB、AC于点E、F时,是说明△BPE

如图,在等腰RT△ABC中,∠A=90°,P为BC的中点,小明拿着含45°角的透明三角板,使45°角的顶点落在点P,且绕P旋转.(1)如图1,当三角板的两边分别交AB、AC于点E、F时,是说明△BPE

题目
如图,在等腰RT△ABC中,∠A=90°,P为BC的中点,小明拿着含45°角的透明三角板,使45°角的顶点落在点P,且绕P旋转.(1)如图1,当三角板的两边分别交AB、AC于点E、F时,是说明△BPE∽△CFP.(2)将三角板绕点P旋转到如图2所示的位置,三角板的两边分别交BA的延长线和边AC于点E、F.探究1:△BPE与△CFP还相似吗?(只需写出结论).探究2:连接EF,△BPE与△EFP是否相似?请说明理由.
答案
(1)
证明:
∵⊿ABC为等腰直角三角形
∴∠B=∠C=45º
∴∠CPF+∠CFP=180º-∠C=135º
∵∠BBE+∠CPF=180º-∠EPF=135º
∴∠BPE=∠CFP
∴⊿PBE∽⊿CFP(AA‘)
(2)
探究1:△BPE与△CFP还相似
∵∠CPF+∠CFP=∠BBE+∠CPF
探究2:,△BPE与△EFP不相似
连接AP,∵AP是中线,根据三线合一,AP⊥BC
∴∠BPA=90º
∠BPE=90º+∠APE
∵⊿EFP是等腰直角三角形
∠PEF=90º
∴∠BPE是钝角>∠PEF
∴△BPE与△EFP不相似
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.