平面上有100条直线,它们之间能否恰有1985个不同的交点?

平面上有100条直线,它们之间能否恰有1985个不同的交点?

题目
平面上有100条直线,它们之间能否恰有1985个不同的交点?
答案
这个题初看挺复杂,一步步逼近吧:
100条直线若两两相交,可得C(2,100)=4950个交点
设有k个共点的直线是束,每一束中直线的条数为
n1,n2,...,nk(ni≥3,i=1,2,...,k)
有n1+n2+...+nk≤100
这时每一束的交点数减少C(2,n)-1个
为使[C(2,n1)-1]+[C(2,n2)-1]+...+[C(2,nk)-1]=C(2,100)-1985=2965
可取最接近2965的C(2,77)-1=2925代替C(2,n1)-1
取n1=77,类似地取n2=9,n3=4,则有
[C(2,77)-1]+[C(2,9)-1]+[C(2,4)-1]=C(2,100)-1985=2965
这说明:100条直线中,有77条直线共A点,另9条共B点,还有另4条共C点
此外再无“三线共点”或平行线,这时恰好有1985个交点.
所以是存在的,完全可能!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.