设A,B,C是三个互不相等的正整数,求证:

设A,B,C是三个互不相等的正整数,求证:

题目
设A,B,C是三个互不相等的正整数,求证:
在a*a*a-a*b*b*b, b*b*b*c-b*c*c*c, c*c*c*a-c*a*a*a三个数中,至少有一个数能被10整除:
答案
a^3b-ab^3=ab(a+b)(a-b);所以不论a,b的奇偶性,这三个数必然是偶数.以下只要证明a,b,c,a+b,a+c,b+c,a-b,b-c,c-a中有一个能被5整除就行了.如果a,b,c中有一个能被5整除,命题成立.若a,b,c中有两个数被5除余数相同,不妨设为a和b,则a-b能被5整除,命题成立.若a,b,c三个数被5除余数都不同,由于整数被五除只有五种情况,但整除的情况已经被排除,即只剩下余1,2,3,4.现将1,4归为一组,2,3归为一组,按鸽笼原理,a,b,c必有两个数再同一组,同一组的两个数相加能被五整除,这种情况命题也成立.综上所述,命题成立.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.