在以O为原点的平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴正半轴交于A、B两点(B在A点的右侧),抛物线的对称轴是x=2,且S△AOC=3/2. (1)求此抛

在以O为原点的平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴正半轴交于A、B两点(B在A点的右侧),抛物线的对称轴是x=2,且S△AOC=3/2. (1)求此抛

题目
在以O为原点的平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴正半轴交于A、B两点(B在A点的右侧),抛物线的对称轴是x=2,且S△AOC=
3
2

(1)求此抛物线的解析式;
(2)设此抛物线的顶点为D,求四边形ADBC的面积.
答案
(1)如图所示,
∵S△AOC=
1
2
×OA×OC=
1
2
×OA×3=
3
2

∴OA=1,
∴A点的坐标为(1,0),
由题意抛物线的对称轴为直线x=2,且OA=1,
根据对称性可得AB=2×(2-1)=2,
∴B点坐标为(3,0),
将A、B、C三点的坐标代入抛物线方程得:
12+b×1+c=0
32+b×3+c=0
c=3

解得
a=1
b=−4
c=3

∴抛物线的解析式为y=x2-4x+3.
(2)将x=2代入抛物线解析式求得D点坐标为-1,
∴S四边形ADBC=S△ABC+S△ABD=
1
2
×AB×(|yC||yD|),
=
1
2
×2×(3+1)=4,
∴四边形ADBC的面积为4.
(1)根据C点的坐标,可求出OC的长,已知三角形OAC的面积,可求出A点的坐标,依据抛物线对称轴的解析式可求得B点坐标,然后求出A、B、C三点坐标后即可用待定系数法求出抛物线的解析式.
(2)根据(1)得出的抛物线的解析式即可求出D点的坐标,由于四边形ADBC不是规则的图形,可将其分成三角形ABC和三角形ABD两部分来求.

二次函数综合题.

本题考查了二次函数解析式的确定和图形面积的求法.不规则图形的面积通常转化为规则图形的面积的和差.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.