设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13 (Ⅰ)求{an},{bn}的通项公式; (Ⅱ)求数列{an•bn}的前n项和Sn.

设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13 (Ⅰ)求{an},{bn}的通项公式; (Ⅱ)求数列{an•bn}的前n项和Sn.

题目
设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和Sn
答案
(I)设{an}的公差为d,{bn}的公比为q,则依题意有q>0,
∵a1=b1=1,a3+b5=21,a5+b3=13,
1+2d+q4=21
1+4d+q2=13
,解得d=2,q=2.  
∴an=1+(n-1)d=2n-1,bn=2n−1
(Ⅱ)由(I)得,an•bn=(2n-1)•2n-1
Sn=1•20+3•21+…+(2n-1)•2n-1
2Sn=1•2+3•22+…+(2n-3)•2n-1+(2n-1)•2n
两式相减可得,-Sn=1+2(2+22+2n-1)-(2n-1)•2n
=1+2×
2(1−2n−1)
1−2
-(2n-1)•2n
=(3-2n)•2n-3,
则Sn=(2n-3)•2n+3.
(Ⅰ)设出{an}的公差,{bn}的公比,利用a1=b1=1,a3+b5=21,a5+b3=13,建立方程组,即可求数列{an},{bn}的通项公式;
(Ⅱ)由(1)可得,an•bn=(2n-1)•2n-1,结合数列的特点利用错位相减法,可求前n项和Sn

等差数列与等比数列的综合.

本题主要考查了利用基本量表示等差数列及等 数列的通项公式,错位相减求数列的和是数列求和方法中的重点和难点.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.