如何证明(1+1/x)^x的极限是e

如何证明(1+1/x)^x的极限是e

题目
如何证明(1+1/x)^x的极限是e
答案
令1/x=t,t趋向0,原极限=S=(1+t)^(1/t)
则lnS=[ln(1+t)]/t=(罗比达法则,分子分母都求导)=[1/(1+t)]/1,0代入得lnS趋向1,故S趋向e.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.