求∫(0到π/2)(e^(2t)×cost)dt的详解.

求∫(0到π/2)(e^(2t)×cost)dt的详解.

题目
求∫(0到π/2)(e^(2t)×cost)dt的详解.
答案
先求∫(e^(2t)cost)dt
=(1/2)∫costd(e^(2t))
=(1/2)coste^(2t)+(1/2)∫e^(2t)sintdt
=(1/2)coste^(2t)+(1/4)∫sintd(e^(2t))
=(1/2)coste^(2t)+(1/4)sinte^(2t)-(1/4)∫e^(2t)costdt
【上式出现类似左边原积分】
移项,两边同时乘以4/5,得
∫e^(2t)costdt=(2/5)coste^(2t)+(1/5)sinte^(2t)+C=f(t)
所以,原定积分=f(π/2)-f(0)=(1/5)e^π-(2/5)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.