已知M为等腰三角形ABC底边BC上任意一点 求证:|AB|²;=|AM|²;+|BM|*|MC|

已知M为等腰三角形ABC底边BC上任意一点 求证:|AB|²;=|AM|²;+|BM|*|MC|

题目
已知M为等腰三角形ABC底边BC上任意一点 求证:|AB|²;=|AM|²;+|BM|*|MC|
答案
分别记BM、CM、AM为x,y,z,且记AB=AC=t,AM和CM的夹角是e.根据余弦定理,
z^2+x^2-2xz cos (Pi-e)=t^2
z^2+y^2-2yz cos (e)=t^2
两式作差得到2z cos(e)=y-x
以此代入以上两式中的任一个立即得
t^2=z^2+xy
此即待证结论.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.