已知函数f(x)=ln(1+x)-mx.(Ⅰ)当m=1时,求函数f(x)的单调递减区间;(Ⅱ)求函数f(x)的极值;(Ⅲ)若函数f(x)在区间[0,e2-1]上恰有两个零点,求m的取值范围.
题目
已知函数f(x)=ln(1+x)-mx.
(Ⅰ)当m=1时,求函数f(x)的单调递减区间;
(Ⅱ)求函数f(x)的极值;
(Ⅲ)若函数f(x)在区间[0,e2-1]上恰有两个零点,求m的取值范围.
答案
(I) 依题意,函数f(x)的定义域为(-1,+∞),
当m=1时,f(x)=ln(1+x)-x,∴
f′(x)=-1…(2分)
由f'(x)<0得
-1<0,即
<0,解得x>0或x<-1,
又∵x>-1,∴x>0,∴f(x)的单调递减区间为(0,+∞). …(4分)
(II)求导数可得
f′(x)=-m,(x>-1)
(1)m≤0时,f'(x)≥0恒成立,∴f(x)在(-1,+∞)上单调递增,无极值.…(6分)
(2)m>0时,由于
-1>-1,所以f(x)在
(-1, -1]上单调递增,在
[-1, +∞)上单调递减,
从而
f(x)极大值=f(-1)=m-lnm-1. …(9分)
(III)由(II)问显然可知,
当m≤0时,f(x)在区间[0,e
2-1]上为增函数,∴在区间[0,e
2-1]不可能恰有两个零点. …(10分)
当m>0时,由(II)问知f(x)
极大值=
f(-1),
又f(0)=0,∴0为f(x)的一个零点. …(11分)
∴若f(x)在[0,e
2-1]恰有两个零点,只需
即
,
∴
≤m<1…(13分)
(I)确定函数f(x)的定义域,求导函数,利用f'(x)<0,可得f(x)的单调递减区间;
(II)求导数,分类讨论,确定函数的单调性,从而可得函数f(x)的极值;
(III)由(II)问可知,当m≤0时,在区间[0,e2-1]不可能恰有两个零点;当m>0时,利用0为f(x)的一个零点,结合f(x)在[0,e2-1]恰有两个零点,建立不等式,即可求m的取值范围.
利用导数研究函数的极值;利用导数研究函数的单调性.
本题考查导数知识的运用,考查函数的单调性与极值,考查函数的零点,考查分类讨论的数学思想,属于中档题.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点