50个互不相同的非零自然数的和为101101,那么它们的最大公约数的最大值是多少?
题目
50个互不相同的非零自然数的和为101101,那么它们的最大公约数的最大值是多少?
答案
因为101101=7×11×13×101
又50个互不相同的非零自然数的和,最小为1+2+…+50=(1+50)×50÷2=1275,
即至少要1275,才能分解成50个不同非零自然数的和.
据101101=7×11×13×101可知,最小可能为13×101=1313,
所以,他们的最大公约数的最大值为7×11=77
答:它们的最大公约数的最大值是77.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点