如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.

如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.

题目
如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.
答案
△OMN是等腰直角三角形.
理由:连接OA.
∵在△ABC中,∠A=90°,AB=AC,O是BC的中点,
∴AO=BO=CO(直角三角形斜边上的中线是斜边的一半);
∠B=∠C=45°;
在△OAN和OBM中,
AO=BO
∠NAO=∠B
AN=BM(已知)

∴△OAN≌△OBM(SAS),
∴ON=OM(全等三角形的对应边相等);
∴∠AON=∠BOM(全等三角形的对应角相等);
又∵∠BOM+∠AOM=90°,
∴∠NOM=∠AON+∠AOM=90°,
∴△OMN是等腰直角三角形.
连接OA.先证得△OAN≌△OBM,然后根据全等三角形的对应边相等推知OM=ON;然后由等腰直角三角形ABC的性质、等腰三角形OMN的性质推知∠NOM=90°,即△OMN是等腰直角三角形.

等腰直角三角形;全等三角形的判定与性质.

本题考查了等腰直角三角形的判定与性质、全等三角形的判定与性质.解答该题的关键一步是根据等腰直角三角形ABC的“三线合一”的性质推知OA=OB=OC.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.