已知x^2/a^2+y^2/b^2=1与x轴的正半轴交于A,0是原点,若椭圆是存在一点M,使MA垂直MO求椭圆的圆心率

已知x^2/a^2+y^2/b^2=1与x轴的正半轴交于A,0是原点,若椭圆是存在一点M,使MA垂直MO求椭圆的圆心率

题目
已知x^2/a^2+y^2/b^2=1与x轴的正半轴交于A,0是原点,若椭圆是存在一点M,使MA垂直MO求椭圆的圆心率
答案
你可以设
M坐标为 x=acosm ,y=bsinm
MA垂直于MO A(a,0)
所以 向量MA垂直于向量MO
即 (a-acosm,bsinm)(acosm,bsinm)=0
整理 a^2cosm-a^2cos^2m+b^2sin^2m=0
a^2cosm-a^2cos^2m+b^2(1-cos^2m)=0
(a^2+b^2)cos^2m-a^2cosm-b^2=0
c^2cos^2m-a^2cosm+c^2-a^2=0
c^2x^2-a^2x+c^2-a^2=0 x
然后你根据 △>0
-2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.