已知关于x的一元二次方程kx2+2(k+4)x+(k-4)=0 (1)若方程有实数根,求k的取值范围 (2)若等腰三角形ABC的边长a=3,另两边b和c恰好是这个方程的两个根,求△ABC的周长.

已知关于x的一元二次方程kx2+2(k+4)x+(k-4)=0 (1)若方程有实数根,求k的取值范围 (2)若等腰三角形ABC的边长a=3,另两边b和c恰好是这个方程的两个根,求△ABC的周长.

题目
已知关于x的一元二次方程kx2+2(k+4)x+(k-4)=0
(1)若方程有实数根,求k的取值范围
(2)若等腰三角形ABC的边长a=3,另两边b和c恰好是这个方程的两个根,求△ABC的周长.
答案
(1)∵关于x的一元二次方程kx2+2(k+4)x+(k-4)=0方程有实数根,
∴b2-4ac=[2(k+4)]2-4k(k-4)≥0,
解得:k≥-
4
3
且k≠0;
(2)①若a=3为底边,则b,c为腰长,则b=c,则△=0.
∴b2-4ac=[2(k+4)]2-4k(k-4)=0,
解得:k=-
4
3

此时原方程化为x2-4x+4=0
∴x1=x2=2,即b=c=2.
此时△ABC三边为3,2,2能构成三角形,
∴△ABC的周长为:3+2+2=7;
②若a=b为腰,则b,c中一边为腰,不妨设b=a=3
代入方程:kx2+2(k+4)x+(k-4)=0得:k×32+2(k+4)×3+(k-4)=0
∴解得:k=-
5
4

∵x1×x2=bc=
k−4
k
=
5
4
−4
5
4
=
21
5
=3c,
∴c=
7
5

∴△ABC的周长为:3+3+
7
5
=
37
5
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.