如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m. (1)建立如图所示的直角坐标系,求此抛物线的解析式; (2)现有一辆载有救援物资的货
题目
如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m.
(1)建立如图所示的直角坐标系,求此抛物线的解析式;
(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行),试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?
答案
(1)设抛物线的解析式为y=ax
2(a不等于0),桥拱最高点O到水面CD的距离为h米.
则D(5,-h),B(10,-h-3)
∴
解得
∴抛物线的解析式为y=-
x
2
(2)水位由CD处涨到点O的时间为:1÷0.25=4(小时)
货车按原来速度行驶的路程为:40×1+40×4=200<280
∴货车按原来速度行驶不能安全通过此桥.
设货车速度提高到x千米/时
当4x+40×1=280时,x=60
∴要使货车安全通过此桥,货车的速度应超过60千米/时.
根据抛物线在坐标系的位置,设抛物线的解析式为y=ax2,设D、B的坐标求解析式;
二次函数的应用.
本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 5/2x+1/3x=17 怎么解 用方程
- 一条线段分七分一共有几条线段
- 大于负3且不大于4的整数
- The bag is ___ the chair.横线填in还是on?
- 任意两个非0有理数的和,差,积,商,还是有理数吗
- 一间老木房 英语怎么说
- 一质量m汽车,通过凸路面最高处时对路面压力为N1,通过凹路面最底处对路面压力N2,则
- 甲乙两站相距252千米,一列慢车从甲站开出,每小时72千米,另一列快车从乙站开出,每小时行96千米.
- would you like to go to the zoo with us
- 文言文《守株待兔》中为什宋人不会再得到兔子?