正方形ABCD的边长为a,点B是正方形ABCD的BC边上一点,证明:点E到正方形的两条对角线的距离和等于根号2/2*a

正方形ABCD的边长为a,点B是正方形ABCD的BC边上一点,证明:点E到正方形的两条对角线的距离和等于根号2/2*a

题目
正方形ABCD的边长为a,点B是正方形ABCD的BC边上一点,证明:点E到正方形的两条对角线的距离和等于根号2/2*a
答案
正方形的对角线垂直平分的,设交点为O
对角线长为根号(2)a
OB=根号(2)a/2
作EF垂直AC于F,EG垂直BD于G
则EF平行BD,EG平行AC
角DBC为45度
三角形BEG,ECF为等腰直角三角形
EG=GB=FO,EF=CF=GO
相加就等于OB=根号(2)a/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.