如图,已知E是正方形ABCD的边BC的中点,点F在边CD上,且∠BAE=∠FAE, 求证:AF=AD+CF.

如图,已知E是正方形ABCD的边BC的中点,点F在边CD上,且∠BAE=∠FAE, 求证:AF=AD+CF.

题目
如图,已知E是正方形ABCD的边BC的中点,点F在边CD上,且∠BAE=∠FAE,
求证:AF=AD+CF.
答案
证明:过E点作EG⊥AF,垂足为G,
∵∠BAE=∠EAF,∠B=∠AGE=90°,
又∵∠BAE=∠EAF,即AE为角平分线,EB⊥AB,EG⊥AG,
∴BE=EG,
在Rt△ABE和Rt△AGE中,
BE=EG
AE=AE

∴Rt△ABE≌Rt△AGE(HL),
∴AG=AB,
同理可知CF=GF,
∴AF=BC+FC=AD+CF.
过E点作EG⊥AF,垂足为G,根据题干条件首先证明△ABE≌△AGE,即可得AG=AB,同理证明出CF=GF,于是结论可以证明.

正方形的性质;角平分线的性质.

本题主要考查正方形的性质和全等三角形的判定与性质的知识点,解答本题的关键是熟练掌握正方形的性质,此题难度不大.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.